Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Vaccines (Basel) ; 11(4)2023 Apr 17.
Article in English | MEDLINE | ID: covidwho-2300315

ABSTRACT

Several effective COVID-19 vaccines are administered to combat the COVID-19 pandemic globally. In most African countries, there is a comparatively limited deployment of vaccination programs. In this work, we develop a mathematical compartmental model to assess the impact of vaccination programs on curtailing the burden of COVID-19 in eight African countries considering SARS-CoV-2 cumulative case data for each country for the third wave of the COVID-19 pandemic. The model stratifies the total population into two subgroups based on individual vaccination status. We use the detection and death rates ratios between vaccinated and unvaccinated individuals to quantify the vaccine's effectiveness in reducing new COVID-19 infections and death, respectively. Additionally, we perform a numerical sensitivity analysis to assess the combined impact of vaccination and reduction in the SARS-CoV-2 transmission due to control measures on the control reproduction number (Rc). Our results reveal that on average, at least 60% of the population in each considered African country should be vaccinated to curtail the pandemic (lower the Rc below one). Moreover, lower values of Rc are possible even when there is a low (10%) or moderate (30%) reduction in the SARS-CoV-2 transmission rate due to NPIs. Combining vaccination programs with various levels of reduction in the transmission rate due to NPI aids in curtailing the pandemic. Additionally, this study shows that vaccination significantly reduces the severity of the disease and death rates despite low efficacy against COVID-19 infections. The African governments need to design vaccination strategies that increase vaccine uptake, such as an incentive-based approach.

2.
Front Public Health ; 11: 1085991, 2023.
Article in English | MEDLINE | ID: covidwho-2299072

ABSTRACT

Background: The Efficacy and effectiveness of vaccination against SARS-CoV-2 have clearly been shown by randomized trials and observational studies. Despite these successes on the individual level, vaccination of the population is essential to relieving hospitals and intensive care units. In this context, understanding the effects of vaccination and its lag-time on the population-level dynamics becomes necessary to adapt the vaccination campaigns and prepare for future pandemics. Methods: This work applied a quasi-Poisson regression with a distributed lag linear model on German data from a scientific data platform to quantify the effects of vaccination and its lag times on the number of hospital and intensive care patients, adjusting for the influences of non-pharmaceutical interventions and their time trends. We separately evaluated the effects of the first, second and third doses administered in Germany. Results: The results revealed a decrease in the number of hospital and intensive care patients for high vaccine coverage. The vaccination provides a significant protective effect when at least approximately 40% of people are vaccinated, whatever the dose considered. We also found a time-delayed effect of the vaccination. Indeed, the effect on the number of hospital patients is immediate for the first and second doses while for the third dose about 15 days are necessary to have a strong protective effect. Concerning the effect on the number of intensive care patients, a significant protective response was obtained after a lag time of about 15-20 days for the three doses. However, complex time trends, e.g. due to new variants, which are independent of vaccination make the detection of these findings challenging. Conclusion: Our results provide additional information about the protective effects of vaccines against SARS-CoV-2; they are in line with previous findings and complement the individual-level evidence of clinical trials. Findings from this work could help public health authorities efficiently direct their actions against SARS-CoV-2 and be well-prepared for future pandemics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19 Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , Intensive Care Units , Vaccination , Hospitals
3.
Front Public Health ; 11: 1087580, 2023.
Article in English | MEDLINE | ID: covidwho-2272722

ABSTRACT

Introduction: Evaluating the potential effects of non-pharmaceutical interventions on COVID-19 dynamics is challenging and controversially discussed in the literature. The reasons are manifold, and some of them are as follows. First, interventions are strongly correlated, making a specific contribution difficult to disentangle; second, time trends (including SARS-CoV-2 variants, vaccination coverage and seasonality) influence the potential effects; third, interventions influence the different populations and dynamics with a time delay. Methods: In this article, we apply a distributed lag linear model on COVID-19 data from Germany from January 2020 to June 2022 to study intensity and lag time effects on the number of hospital patients and the number of prevalent intensive care patients diagnosed with polymerase chain reaction tests. We further discuss how the findings depend on the complexity of accounting for the seasonal trends. Results and discussion: Our findings show that the first reducing effect of non-pharmaceutical interventions on the number of prevalent intensive care patients before vaccination can be expected not before a time lag of 5 days; the main effect is after a time lag of 10-15 days. In general, we denote that the number of hospital and prevalent intensive care patients decrease with an increase in the overall non-pharmaceutical interventions intensity with a time lag of 9 and 10 days. Finally, we emphasize a clear interpretation of the findings noting that a causal conclusion is challenging due to the lack of a suitable experimental study design.


Subject(s)
COVID-19 , Communicable Disease Control , COVID-19/epidemiology , Humans , Germany/epidemiology , Linear Models , Hospitalization , Intensive Care Units
4.
Sci Afr ; 18: e01408, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2096006

ABSTRACT

The COVID-19 pandemic is currently causing several damages to the world, especially in the public health sector. Due to identifiability problems in parameters' estimation of complex compartmental models, this study considered a simple deterministic susceptible-infectious-recovered (SIR)-type model to characterize the first wave and predict the future course of the pandemic in the West African countries. We estimated some specific characteristics of the disease's dynamics, such as its initial conditions, reproduction numbers, true peak and peak of the reported cases, with their corresponding times, final epidemic size and time-varying attack ratio. Our findings revealed a relatively low proportion of susceptible individuals in the region and the different countries ( 1.2 % across West Africa). The detection rate of the disease was also relatively low ( 0.9 % for West Africa as a whole) and < 2 % for most countries, except for Gambia (12.5 %), Cape-Verde ( 9.5 % ), Mauritania ( 5.9 % ) and Ghana ( 4.4 % ). The reproduction number varied between 1.15 (Burkina-Faso) and 4.45 (Niger), and most countries' peak time of the first wave of the pandemic was between June and July. Generally, the peak time of the reported cases came a week (7-8 days) after the true peak time. The model predicted for the first wave, 222,100 actual active cases in the region at the peak time, while the final epidemic size accounted for 0.6 % of the West African population (2,526,700 individuals). The results showed that COVID-19 has not severely affected West Africa as in other regions. However, current control measures and standard operating procedures should be maintained over time to accelerate a decline in the observed trends of the pandemic.

5.
Infect Dis Model ; 6: 258-272, 2021.
Article in English | MEDLINE | ID: covidwho-1065113

ABSTRACT

Since the emergence of the novel 2019 coronavirus pandemic in December 2019 (COVID-19), numerous modellers have used diverse techniques to assess the dynamics of transmission of the disease, predict its future course and determine the impact of different control measures. In this study, we conducted a global systematic literature review to summarize trends in the modelling techniques used for Covid-19 from January 1st, 2020 to November 30th, 2020. We further examined the accuracy and precision of predictions by comparing predicted and observed values for cumulative cases and deaths as well as uncertainties of these predictions. From an initial 4311 peer-reviewed articles and preprints found with our defined keywords, 242 were fully analysed. Most studies were done on Asian (78.93%) and European (59.09%) countries. Most of them used compartmental models (namely SIR and SEIR) (46.1%) and statistical models (growth models and time series) (31.8%) while few used artificial intelligence (6.7%), Bayesian approach (4.7%), Network models (2.3%) and Agent-based models (1.3%). For the number of cumulative cases, the ratio of the predicted over the observed values and the ratio of the amplitude of confidence interval (CI) or credibility interval (CrI) of predictions and the central value were on average larger than 1 indicating cases of inaccurate and imprecise predictions, and large variation across predictions. There was no clear difference among models used for these two ratios. In 75% of predictions that provided CI or CrI, observed values fall within the 95% CI or CrI of the cumulative cases predicted. Only 3.7% of the studies predicted the cumulative number of deaths. For 70% of the predictions, the ratio of predicted over observed cumulative deaths was less or close to 1. Also, the Bayesian model made predictions closer to reality than classical statistical models, although these differences are only suggestive due to the small number of predictions within our dataset (9 in total). In addition, we found a significant negative correlation (rho = - 0.56, p = 0.021) between this ratio and the length (in days) of the period covered by the modelling, suggesting that the longer the period covered by the model the likely more accurate the estimates tend to be. Our findings suggest that while predictions made by the different models are useful to understand the pandemic course and guide policy-making, some were relatively accurate and precise while other not.

6.
PLoS One ; 15(10): e0240578, 2020.
Article in English | MEDLINE | ID: covidwho-881157

ABSTRACT

The initial phase dynamics of an epidemic without containment measures is commonly well modelled using exponential growth models. However, in the presence of containment measures, the exponential model becomes less appropriate. Under the implementation of an isolation measure for detected infectives, we propose to model epidemic dynamics by fitting a flexible growth model curve to reported positive cases, and to infer the overall epidemic dynamics by introducing information on the detection/testing effort and recovery and death rates. The resulting modelling approach is close to the Susceptible-Infectious-Quarantined-Recovered model framework. We focused on predicting the peaks (time and size) in positive cases, active cases and new infections. We applied the approach to data from the COVID-19 outbreak in Italy. Fits on limited data before the observed peaks illustrate the ability of the flexible growth model to approach the estimates from the whole data.


Subject(s)
Betacoronavirus , Containment of Biohazards/methods , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Models, Statistical , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Quarantine/methods , COVID-19 , Coronavirus Infections/virology , Humans , Incidence , Italy/epidemiology , Pneumonia, Viral/virology , Retrospective Studies , SARS-CoV-2 , Time Factors
7.
Math Biosci ; 328: 108431, 2020 10.
Article in English | MEDLINE | ID: covidwho-684665

ABSTRACT

The novel coronavirus (COVID-19) pandemic is causing devastating demographic, social, and economic damage globally. Understanding current patterns of the pandemic spread and forecasting its long-term trajectory is essential in guiding policies aimed at curtailing the pandemic. This is particularly important in regions with weak economies and fragile health care systems such as West Africa. We formulate and use a deterministic compartmental model to (i) assess the current patterns of COVID-19 spread in West Africa, (ii) evaluate the impact of currently implemented control measures, and (iii) predict the future course of the pandemic with and without currently implemented and additional control measures in West Africa. An analytical expression for the threshold level of control measures (involving a reduction in the effective contact rate) required to curtail the pandemic is computed. Considering currently applied health control measures, numerical simulations of the model using baseline parameter values estimated from West African COVID-19 data project a 67% reduction in the daily number of cases when the epidemic attains its peak. More reduction in the number of cases will be achieved if additional public health control measures that result in a reduction in the effective contact rate are implemented. We found out that disease elimination is difficult when more asymptomatic individuals contribute in transmission or are not identified and isolated in a timely manner. However, maintaining a baseline level of asymptomatic isolation and a low transmission rate will lead to a significant reduction in the number of daily cases when the pandemic peaks. For example, at the baseline level of asymptomatic isolation, at least a 46% reduction in the transmission rate is required for disease elimination. Additionally, disease elimination is possible if asymptomatic individuals are identified and isolated within 5 days (after the incubation period). Combining two or more measures is better for disease control, e.g., if asymptomatic cases are contact traced or identified and isolated in less than 8 days, only about 29% reduction in the disease transmission rate is required for disease elimination. Furthermore, we showed that the currently implemented measures triggered a 33% reduction in the time-dependent effective reproduction number between February 28 and June 26, 2020. We conclude that curtailing the COVID-19 pandemic burden significantly in West Africa requires more control measures than those that have already been implemented, as well as more mass testing and contact tracing in order to identify and isolate asymptomatic individuals early.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Africa, Western/epidemiology , Basic Reproduction Number , COVID-19 , Communicable Disease Control/methods , Communicable Disease Control/statistics & numerical data , Computer Simulation , Contact Tracing , Coronavirus Infections/epidemiology , Forecasting/methods , Humans , Mathematical Concepts , Models, Biological , Models, Statistical , Pneumonia, Viral/epidemiology , Public Health , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL